

IECEx Certificate of Conformity

INTERNATIONAL ELECTROTECHNICAL COMMISSION **IEC Certification System for Explosive Atmospheres**

for rules and details of the IECEx Scheme visit www.iecex.com

Certificate No.: **IECEx TUN 17.0039X** Page 1 of 4

Certificate history: Issue 0 (2018-02-13)

Issue No: 1 Status: Current

Date of Issue: 2021-09-21

Applicant: **Barksdale GmbH**

Dorn-Assenheimer Str. 27 61203 Reichelsheim

Germany

Equipment: Float switch and Limit switch

UNS*; UNS1000*; UNS2000*; UNS2100-EX*; UNS-VA/SB-VA52; UNS-VA/SB1-VA52; UNS-VA/SB5 Bilge Guard Plus; Optional accessory:

UNS-VA/SB5 GE347 Bilge Guard Plus; UNS-VA/SB4 Bilge Guard; UNS-VA/SB4 GE347 Bilge Guard and GK03-EXI

Type of Protection: Intrinsic Safety "ia"

Marking: Float switch with floats from Buna-N or other plastic material (PP,PE,PVC, PTFE or PA), as well as with ST1-

plug:

Ex ia IIB T6 Ga or

Ex ia IIB T6 Ga/Gb or

Ex ia IIB T6 Gb or

Ex ia IIIC T100°C Da

Limit switch and other float switchs:

Ex ia IIC T6 Ga or

Ex ia IIC T6 Ga/Gb or Ex ia IIC T6 Gb or Ex ia IIIC T100°C Da

Approved for issue on behalf of the IECEx **Andreas Meyer**

Certification Body:

Deputy Head of the IECEx Certification Body

Position: Signature:

(for printed version)

(for printed version)

- 1. This certificate and schedule may only be reproduced in full.
- This certificate is not transferable and remains the property of the issuing body.
 The Status and authenticity of this certificate may be verified by visiting www.iecex.com or use of this QR Code.

Certificate issued by:

TÜV NORD CERT GmbH Hanover Office Am TÜV 1, 30519 Hannover Germany

IECEx Certificate of Conformity

Certificate No.: IECEx TUN 17.0039X Page 2 of 4

Date of issue: 2021-09-21 Issue No: 1

Manufacturer: Barksdale GmbH

Dorn-Assenheimer Str. 27 61203 Reichelsheim

Germany

Manufacturing locations:

This certificate is issued as verification that a sample(s), representative of production, was assessed and tested and found to comply with the IEC Standard list below and that the manufacturer's quality system, relating to the Ex products covered by this certificate, was assessed and found to comply with the IECEx Quality system requirements. This certificate is granted subject to the conditions as set out in IECEx Scheme Rules, IECEx 02 and Operational Documents as amended

STANDARDS:

The equipment and any acceptable variations to it specified in the schedule of this certificate and the identified documents, was found to comply with the following standards

IEC 60079-0:2017 Explosive atmospheres - Part 0: Equipment - General requirements

Edition:7.0

IEC 60079-11:2011

Explosive atmospheres - Part 11: Equipment protection by intrinsic safety "i"

Edition:6.0

IEC 60079-26:2014 Explosive atmospheres – Part 26: Equipment with Equipment Protection Level (EPL) Ga

Edition:3.0

This Certificate **does not** indicate compliance with safety and performance requirements other than those expressly included in the Standards listed above.

TEST & ASSESSMENT REPORTS:

A sample(s) of the equipment listed has successfully met the examination and test requirements as recorded in:

Test Report:

DE/TUN/ExTR18.0002/01

Quality Assessment Report:

DE/TUN/QAR13.0009/05

IECEx Certificate of Conformity

Certificate No.: IECEx TUN 17.0039X Page 3 of 4

Date of issue: 2021-09-21 Issue No: 1

EQUIPMENT:

Equipment and systems covered by this Certificate are as follows:

General product information:

The float switches of the type series UNS*; UNS1000*; UNS2000*; UNS2100-EX*; UNS-VA/SB-VA52; UNS-VA/SB1-VA52; UNS-VA/SB5 Bilge Guard Plus; UNS-VA/SB5 GE347 Bilge Guard Plus; UNS-VA/SB4 Bilge Guard and UNS-VA/SB4 GE347 Bilge Guard are used for intrinsically safe level measurement of liquid media in containers.

In a tubular construction, encapsulated reed switches are mounted for continuous level determination.

The limit switch type GK03-EXI is used to detect limit values on magnetically controlled level indicators

For electrical data and all other data refer to the attachment to IECEx TUN 17.0039X issue No. 1.

SPECIFIC CONDITIONS OF USE: YES as shown below:

- 1. Metallic process connection parts have to be included in the local potential equalization. A good electrically conductive connection between float switch and system ground has to be ensured..
- 2. For the use in IIC-areas that require EPL Ga each float switch and limit switch, have to be installed and used in such a way that electrostatic charges through operation, maintenance and cleaning are excluded.
- 3. For the use in areas that require EPL Da all float switches and limit switch have to be protected from strong charge generation mechanisms.
- 4. By using an aluminium terminal box KX4(C), KX8(C), KXP(C), KLS1(C) or KLS2(C) in areas that require EPL Ga, the danger of ignition by impact or friction has to be excluded.
- 5. For EPL Ga/Gb applications and at risks by pendulum or vibration the respective parts of the float switches resp. the limit switch have to be secured effectively against these dangers.
- 6. For EPL Ga/Gb applications the medium tangent materials of the float switches resp. the limit switch have to be resistant to the media.
- 7. For EPL Ga/Gb applications the whole devices shall be mounted in a way that allows an installation that results in a sufficient tight joint (IP66 or IP67) or a flameproof joint (IEC 60079-1) in the direction of the less endangered area.

IECEx Certificate of Conformity

Certificate No.: IECEx TUN 17.0039X Page 4 of 4

Date of issue: 2021-09-21 Issue No: 1

DETAILS OF CERTIFICATE CHANGES (for issues 1 and above)

Proof of conformity of the float switches type UNS*; UNS1000*; UNS2000*; UNS2100-EX*; UNS-VA/SB-VA52; UNS-VA/SB1-VA52; UNS-VA/SB5 Bilge Guard Plus; UNS-VA/SB5 GE347 Bilge Guard Plus; UNS-VA/SB4 Bilge Guard and UNS-VA/SB4 GE347 Bilge Guard and the limit switch type GK03-EXI to the current versions of the standard IEC 60079-0:2017, IEC 60079-11:2011 and IEC 60079-26:2014.

_					
Δ	n	n	Δ	v	•

Attachment to IECEx TUN 17.0039X_issue 01.pdf

Page 1 of 7 Attachment to IECEx TUN 17.0039X Issue 1

Description:

The float switches of the type series UNS*; UNS1000*; UNS2000*; UNS2100-EX*; UNS-VA/SB-VA52; UNS-VA/SB1-VA52; UNS-VA/SB5 Bilge Guard Plus; UNS-VA/SB5 GE347 Bilge Guard Plus; UNS-VA/SB4 Bilge Guard and UNS-VA/SB4 GE347 Bilge Guard are used for intrinsically safe level measurement of liquid media in containers.

In a tubular construction, encapsulated reed switches are mounted for continuous level determination. The limit switch type GK03-EXI is used to detect limit values on magnetically controlled level indicators.

Type code: UNS1000*

Special Model

S = with ship building approval

Material

MS = brass

VA = stainless steel W. no. 1.4571, 1.4408

process connection (Fitting)

G1/8 = G1/8"-AG (male), mounting thread

G3/8 = G3/8"-AG (male), mounting thread

G1/2 = G1/2"-AG (male), mounting thread

1/8NPT = 1/8" NPT male, mounting thread 3/8NPT = 3/8" NPT male, mounting thread

1/2NPT = 1/2" NPT male, mounting thread

T1/2 = G1/2"-AG (male), tank screw

T3/4 = G3/4"-AG (male), tank screw

T1 = G1"-AG (male), tank screw

 $T1\frac{1}{4} = G1\frac{1}{4}$ "-AG (male), tank screw

 $T1\frac{1}{2} = G1\frac{1}{2}$ "-AG (male), tank screw

T2 = G2"-AG (male), Tankverschraubung

T1/2NPT = 1/2" NPT male, tank screw

T3/4NPT = 3/4" NPT male, tank screw

T1NPT = 1" NPT male, tank screw

T114NPT = 114" NPT male, tank screw

T1½NPT = 1½" NPT male, tank screw

T2NPT = 2" NPT male, tank screw

Tx = special tank screw thread

 $M20x1,5 = M20 \times 1,5 \text{ mm AG (male)}, \text{ tank screw}$

FL2 = DN 25 / PN 16, Form A, DIN2527 blind flange

FL3 = DN 50 / PN 16, Form A, DIN2527 blind flange

FLA3 = 2" 150 lbs., RF, ASME B 16.5 blind flange

FLA5 = 3" 150 lbs., RF, ASME B 16.5 blind flange

FLx/FLS = special flange

(Other flanges and mounting threads available on request)

Page 2 of 7 Attachment to IECEx TUN 17.0039X Issue 1

Electrical connection

K x/y = cable, direct potted

C = conduit connection with cable

PG x/y = cable gland PG or metric thread with cable

x= cable length in m

y= Cable material: 1=SI(-40°C--), 2=PVC(-20°C--), 3=CR(-20°C--),

4=PUR(-40°C--), 5=FEP(-40°C--), (permanent

installation)

ST1 = EN 175301-803-A, cube plug, 3 pin + 1 ground

KX4(C) = Ex ia, junction box (Al), 4 terminals, cable gland

KX8(C) = Ex ia, junction box (Al), 8 terminals, cable gland

KXP(C) = junction box, pressure proof

M12x1 = M12x1mm plug (PA or brass) with 4 or 5 pin

KLS1(C) = Aluminum Terminal Box, 6 Terminals (only in S model)

KLS2(C) = Aluminium Terminal Box, 9 Terminals (only in S model)

KS(C) = Cable with Shipbuilding Approvals (only in S model)

Float type

PE23 = \emptyset 23 mm PE / \emptyset 0.91" PE foamed (cylinder) (IIB)

BN18 = Ø18 mm NBR / Ø0.71" NBR foamed (cylinder)

BN25 = Ø25 mm NBR / Ø0.98" NBR foamed (cylinder)

VA27 = Ø27 mm 1.4571 / Ø1.06" stainless steel 316 Ti (cyl.)

VX44 = Ø44 mm 1.4571 / Ø1.73" stainless steel 316 Ti (ball)

Number of switchpoints

L1 = one switchpoint

Ln = n (max. 5) switchpoints

Contact mode

1 = NO normally open (SPST)

2 = NC normally closed (SPST)

3 = WE change over (SPDT)

Option

Exi = intrinsically safe

DR = damping tube

DUAL = 1 float + 2 switch points

HT = high temp. application

PT100 = Pt100-Element / Pt100-sensor

U = mounting through bottom

90° = angled for side mount.

VV = vertical adjustment (max. 5 bar)

TSxx/2 = temperature switch

 $xx = +60^{\circ}C, +70^{\circ}C, +80^{\circ}C, 90^{\circ}C, /2 = NC$

Page 3 of 7 Attachment to IECEx TUN 17.0039X Issue 1

UNS2000*

Special Model

S = with ship building approval

Material

MS = brass

VA = stainless steel, W. Nr. 1.4571., 1.4408

Process connection (Fitting)

G3/8 = G3/8"-AG (male), mounting thread

G1/2 = G1/2"-AG (male), mounting thread

1/2NPT = 1/2" NPT (male), mounting thread

T1/2 = G1/2" -AG (male), tank screw

T1 = G1"-AG (male), tank screw

 $T1\frac{1}{4} = G1\frac{1}{4}$ "-AG (male), tank screw

 $T1\frac{1}{2} = G1\frac{1}{2}$ "-AG (male), tank screw

T2 = G2"-AG (male), tank screw (not with VA80/VX80 float)

T1NPT = 1" NPT (male), tank screw

T114NPT = 114" NPT (male), tank screw

T1½NPT = 1½" NPT (male), tank screw

T2NPT = 2" NPT (male), tank screw

Tx = special tank screw thread

FL3 = DN 50 / PN 16, Form A, DIN2527 blind flange

FL4 = DN 65 / PN 16, Form A, DIN2527 blind flange

FL5 = DN 80 / PN 16, Form A, DIN2527 blind flange

FLA3 = 2" 150 lbs., RF, ASME B 16.5 blind flange

FLA5 = 3" 150 lbs., RF, ASME B 16.5 blind flange

FLA6 = 4" 150 lbs., RF, ASME B 16.5 blind flange

FLx / FLS = special flange

(Other flanges and mounting threads available on request)

Electrical connection

K x/y = cable, direct potted

C = conduit connection with cable

PG x/y = cable gland PG or metric thread with cable

x= cable length in m

y= Cable material: 1=SI(-40°C--), 2=PVC(-20°C--), 3=CR(-20°C--),

4=PUR(-40°C--), 5=FEP(-40°C--), (permanent

installation)

ST1 = EN 175301-803-A, cube plug, 3 pin + 1 ground (IIB)

KX4(C) = Ex ia, junction box (Al), 4 terminals, cable gland

KX8(C) = Ex ia, junction box (Al), 8 terminals, cable gland

KXP(C) junction box, pressure proof

KLS1(C) = Aluminum Terminal Box, 6 Terminals (only in S model)

KLS2(C) = Aluminum Terminal Box, 9 Terminals (only in S model)

KS = Cable with Shipbuilding Approvals (1m) (only in S model)

M12x1 = M12x1mm plug (PA or brass) with 4 or 5 pin

float type

BN30 = Ø30 mm NBR Ø1.18" NBR foamed (cylinder) Ø1.18" (IIB)

 $VX44/VA44 = \emptyset 44 \text{ mm } 1.4571 / \emptyset 1.73^{\circ} \text{ stainl. st. (cylinder)}$

VX52 = Ø52 mm 1.4571 / Ø2.05" stainless steel 316 Ti (ball)

VX80 = \emptyset 80 mm 1.4571 / \emptyset 3.15" stainless steel 316 Ti (ball)

Anzahl der Schaltpunkte

L1 = one switchpoint

Ln = n (max. 5) switchpoints

Page 4 of 7 Attachment to IECEx TUN 17.0039X Issue 1

Schaltfunktion

1 = NO normally open (SPST)

2 = NC normally closed (SPST)

3 = WE change over (SPDT)

Option

Exi = intrinsically safe

DR = damping tube

DUAL = 1 float + 2 switch points

HT = high temp. application

PT100 = Pt100-sensor

U = mounting through bottom

90° = angled for side mount.

VV = vertical adjustment

TPxx/x = temperature switch

TSxx/x = temperature switch

UNS*

Special Model

S = with ship building approval

Material

MS = brass

VA = stainless steel

Process connection (Fitting)

1/8 = G1/8"-AG (male), mounting thread

1/4 = G1/4"-AG (male), mounting thread

3/8 = G3/8"-AG (male), mounting thread

1/2 = G1/2"-AG (male), mounting thread

1/8NPT = 1/8" NPT male, mounting thread

1/4NPT = 1/4" NPT male, mounting thread

3/8NPT = 3/8" NPT male, mounting thread

1/2NPT = 1/2" NPT male, mounting thread

x/xX = special external mounting thread

Electrical connection

K x/y = cable, direct potted

PG x/y = cable gland PG or metric thread with cable

x= cable length in m

y= Cable material: 1=SI(-40°C--), 2=PVC(-20°C--), 3=CR(-20°C--),

4=PUR(-40°C--), 5=FEP(-40°C--),(permanent

installation)

Float type

BN18 = Ø18 mm NBR foamed (cylinder) / Ø0.71" (IIB)

BN25 = \emptyset 25 mm NBR foamed (cylinder) / \emptyset 0.98" (IIB)

BN30 = Ø30 mm NBR foamed (cylinder) / Ø1.18"(IIB)

VA27 = Ø27 mm 1.4571 stainless steel (cylinder) / Ø1.06"

VX44/VA44 = Ø44 mm stainless steel 1.4571 (cylinder) / Ø1.73"316 Ti

VX52 = Ø52 mm stainless steel 1.4571 / Ø2.05 316 Ti (ball)

VX80 (VA80)= Ø80 mm stainless steel 1.4571) / Ø 3.15"316 Ti (ball)

PP19 = Ø19 mm PP / Ø1.75" PP foamed (cylinder) (IIB)

Contact mode

1 = NO = normally open (SPST)

2 = NC = normally closed (SPST)

3 = WE = change over (SPDT)

Option

Page 5 of 7 Attachment to IECEx TUN 17.0039X Issue 1

Exi = / type of protection intrinsically safe HT = high temp. application (-40°C...+75°C) U = mounting through bottom 90° = angled for side mounting TSxx/x = temp. switch (+60, +70, +80 / or +90°C) TPxx/x = temp. switch (+50, +60, +70, +80 / or +90°C) PT100 = Pt100-sensor

UNS2100-Ex*

Material

VA = Stainless steel, W. Nr. 1.4571., 1.4408

Process connection (Fitting)

T2 = G2"-AG (male), tank screw (not with VA80/VX80 float)

FL3 = DN 50 / PN 16, Form A, DIN2527 blind flange

FL4 = DN 65 / PN 16, Form A, DIN2527 blind flange

FLA3 = 2" 150 lbs., RF, ASME B 16.5 blind flange

FLx / FLS = special flange

(Other flanges and mounting threads available on request)

Electrical connection

KX4(C) = Ex ia, junction box (Al), 4 terminals, cable gland KX8(C) = Ex ia, junction box (Al), 8 terminals, cable gland

Float type

VX44 = Ø44 mm 1.4571 / Ø1.73" stainl. st. (cylinder)

VX52 = Ø52 mm 1.4571 / Ø2.05" stainless steel 316 Ti (ball)

VX80 = Ø80 mm 1.4571 / Ø3.15" stainless steel 316 Ti (ball)

number of switchpoints

L1 = one switchpoint

Ln = n (max. 4) switchpoints

Contact mode

1 = NO normally open (SPST)

2 = NC / normally closed (SPST)

3 = WE change over (SPDT)

Gesamtlänge L0 =... mm (max. 3000 mm) Option

DR = Damping tube

U = Mounting through bottom

TPxx/x = Temperature switch

UNS-VA/SB-VA52

Bilge float switch with test function, VA, float VA52, Reed switch (NO or switcher), 2m, 5m or 10m cable UNS-VA/SB1-VA52

Bilge float switch without test function, VA, float VA52, Reed switch (NO or Wechsler), 2m, 5m or 10m cable

UNS-VA/SB5 Bilge Guard Plus

Bilge float switch with test function, VA, float PE33 (IIB), Reed switch (NO), 2m, 5m, 10m or 15m cable UNS-VA/SB5 GE347 Bilge Guard Plus

Bilge float switch with test function, VA, float PE33 (IIB), Reed switch (NO), 2m, 5m, 10m oder 15m cable, cable break detection according to Namur

UNS-VA/SB4 Bilge Guard

bilge float switch without test function, VA, float PE33 (IIB), Reed switch (NO), 2m, 5m, 10m or 15m cable UNS-VA/SB4 GE347 Bilge Guard

Bilge float switch without test function, VA, float PE33 (IIB), Reed switch (NO), 2m, 5m, 10m or 15m cable, cable break detection according to Namur

GK03-EXI

Page 6 of 7 Attachment to IECEx TUN 17.0039X Issue 1

Limit switch

Marking:

€x>	Float switch with floats from Buna-N or other plastic material (PP,PE,PVC, PTFE or PA), as well as with ST1- plug	Limit switch and other float switchs:
(cx)	Ex ia IIB T6 Ga or Ex ia IIB T6 Ga/Gb or Ex ia IIB T6 Gb or Ex ia IIIC T100°C Da	Ex ia IIC T6 Ga or Ex ia IIC T6 Ga/Gb or Ex ia IIC T6 Gb or Ex ia IIIC T100°C Da

Electrical data:

Power supply

In type of protection intrinsic safety Ex ia IIB/IIC/IIIC

(Terminal box or cable or plug) Only for the connection to certified intrinsically safe

circuits.

Maximum values:

Ui = 28 V li = 125 mA Pi = 0.5 W

Effective internal capacitance C_i = Capacitance of 10 m connection cable = 2 nF Effective internal inductance L_i = Inductance of 10 m connection cable = 10 μ H

Thermal data:

Permissible ambient temperature range:

Float switch with PVC and CR-cable material: -20 °C \leq T_a \leq +75 °C Limit switch GK03-EXI and float switch with SI, PUR, FEP-cable material: -40 °C \leq T_a \leq +75 °C \leq T_a \leq +75 °C

Details of change (applicable only when revising an existing ExTR package):

Proof of conformity of the float switches type UNS*; UNS1000*; UNS2000*; UNS2100-EX*; UNS-VA/SB-VA52; UNS-VA/SB1-VA52; UNS-VA/SB5 Bilge Guard Plus; UNS-VA/SB5 GE347 Bilge Guard Plus; UNS-VA/SB4 Bilge Guard and UNS-VA/SB4 GE347 Bilge Guard and the limit switch type GK03-EXI to the current versions of the standard IEC 60079-0:2017, IEC 60079-11:2011 and IEC 60079-26:2014.

Specific Conditions of Use"

- 1. Metallic process connection parts have to be included in the local potential equalization. A good electrically conductive connection between float switch and system ground has to be ensured.
- 2. For the use in IIC-areas that require EPL Ga each float switch and limit switch, have to be installed and used in such a way that electrostatic charges through operation, maintenance and cleaning are excluded.
- 3. For the use in areas that require EPL Da all float switches and limit switch have to be protected from strong charge generation mechanisms.
- 4. By using an aluminium terminal box KX4(C), KX8(C), KXP(C), KLS1(C) or KLS2(C) in areas that require EPL Ga, the danger of ignition by impact or friction has to be excluded.

Page 7 of 7 Attachment to IECEx TUN 17.0039X Issue 1

- 5. For EPL Ga/Gb applications and at risks by pendulum or vibration the respective parts of the float switches resp. the limit switch have to be secured effectively against these dangers.
- 6. For EPL Ga/Gb applications the medium tangent materials of the float switches resp. the limit switch have to be resistant to the media.
- 7. For EPL Ga/Gb applications the whole devices shall be mounted in a way that allows an installation that results in a sufficient tight joint (IP66 or IP67) or a flameproof joint (IEC 60079-1) in the direction of the less endangered area.